DETERMINATION OF **PROTEINS CONCENTRATIONS**
AND THEIR **MOLECULAR WEIGHTS**
BY **CAPILLARY GEL ELECTROPHORESIS**

INTRODUCTION
The method enables fast separation of proteins according to their molecular weights (Mw) with subsequent protein quantification in protein-containing samples.

MEASUREMENT METHOD
Capillary electrophoresis for the separation and determination of proteins is based on the differential migration of SDS-protein complexes in a narrow fused-silica capillary filled with a low viscous gel, under the influence of the applied electric field. Detection of proteins is performed based on their own absorbance at 220 nm. Due to the presence of a low viscous gel SDS-protein complexes are separated only according to their Mw and thus it enables also to determine Mw of an unknown protein(s).

ADVANTAGES OF THE CAPILLARY ELECTROPHORESIS METHOD
Compared with protein separation with SDS-PAGE, capillary electrophoresis has several important advantages:
- Full automatisation
- Direct protein quantification
- Absence of coloring
- Low analysis cost
- Short analysis time

EQUIPMENT AND REAGENTS
The CAPEL capillary electrophoresis system is used in measurements. Data acquisition, collection, processing and output are performed using a personal computer running under WINDOWS® XP/7/8/10 operating system with installed dedicated software package ELFORUN.
All reagents must be of analytical grade or better. Sample preparation, capillary conditioning and analysis are done according to the detailed protocol, included in the kit.

EXAMPLES OF REAL ANALYSES

BGE: for SDS-protein complex analysis
Capillary: \(L_{\text{eff}} / L_{\text{tot}} = 32/42 \, \text{cm} \); ID 50 \(\mu \text{m} \)
Temperature: 25 °C
Detection: 220 nm

Sample: standard proteins with different Mw (from 10 kDa to 225 kDa)
- 1 – 10 kDa
- 2 – 20 kDa
- 3 – 35 kDa
- 4 – 50 kDa
- 5 – 100 kDa
- 6 – 150 kDa
- 7 – 225 kDa
DEPENDENCE OF $\log M_w$ OF PROTEINS ON THEIR MIGRATION TIME

This dependence enables direct determination of molecular weight of the unknown protein(s) based on its migration time.